
International Journal of Reconfigurable and Embedded Systems (IJRES) 

Vol. 5, No. 2, July 2016, pp. 115~120 

ISSN: 2089-4864      115 

  

Journal homepage: http://iaesjournal.com/online/index.php/IJRES 

Implementation of Low Power Pipelined 64-bit RISC Processor 

with Unbiased FPU on CPLD 
 

 

*J. Vijay Kumar, *B. Naga Raju, **M. Vasu Babu
, 
***T. Ramanjappa 

*Dept of Physics, SKUCET, Sri Krishnadevaraya University, Anantapur, India 

**Dept of Applied Sciences, St. Ann’s College of Engineering Technology, Chirala, India 

***Dept of Physics, Sri Krishnadevaraya University, Anantapur, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jan 2, 2016 

Revised Mar 23, 2016 

Accepted Apr 11, 2016 

 

 This article represents the implementation of low power pipelined 64-bit 

RISC processor on Altera MAXV CPLD device. The design is verified for 

arithmetic operations of both fixed and floating point numbers, branch and 

logical function of RISC processor. For all the jump instruction, the 

processor architecture will automatically flush the data in the pipeline, so as 

to avoid any misbehavior. This processor contains FPU unit, which supports 

double precision IEEE-754 format operations very accurately. The 

simulation results have been verified by using ModelSim software. The ALU 

operations and double precision floating point arithmetic operation results are 

displayed on 7-Segments. The necessary code is written in Verilog HDL. 
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1. INTRODUCTION  

Today RISC CPUs (and microcontrollers) represent the vast majority of all CPUs in use. The RISC 

design technique offers power in even small sizes and thus has come to completely dominate the market for 

low-power “embedded” CPUs. Embedded CPUs are by far the largest market for processors. RISC had also 

completely taken over the market for larger workstations [1]. Over many years, RISC instructions sets have 

tended to grow in size. Thus, some have started using the term “load/store” to describe RISC processors, 

since this is the key element of all such designs. Instead of the CPU itself handling many addressing modes, 

load/store architecture uses a separate unit dedicated to handling very simple forms of load and store 

operations [2].  

The floating point operations have found intensive applications in the various fields for the 

requirements for high precious operation due to its great dynamic range, high precision, and easy operation 

rules. High attention has been paid on the design and research of the floating point processing units. With the 

increasing requirements for the floating point operations for the high-speed data signal processing and the 

scientific operation, the requirements for the high-speed hardware floating point arithmetic units have 

become more and more exigent. The implementation of the floating point arithmetic has been very easy and 

convenient in the floating point high-level languages, but the implementation of the arithmetic by hardware 

has been very difficult [3]. With the development of the very large scale integration (VLSI) technology, a 

kind of devices like CPLD and FPGAs have become the best options for implementing floating hardware 

arithmetic units because of their high integration density, low price, high performance and flexible 

applications requirements for high precious operation [4]. 
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Low power has emerged as a major principle theme in today’s electronics industry. The need for 

low power has caused a major paradigm shift where power dissipation has become an important 

consideration as performance and area. Low-power embedded processors are used in a wide variety of 

applications including cars, phones, digital cameras, printers, and other such devices. There are lots of 

techniques like Clock Gating, Supply Voltage Reduction, Multi-Vdd, Dynamic Voltage Frequency Scaling 

etc to reduce the power.  

In the present work, CPLD based 64-bit RISC processor with a high-speed floating point double 

precision is designed using pipelined architecture. This can improve the speed of the operation as well as 

overall performance [5]. The processor contains to implement 4-stage pipelining including double precision 

floating point unit. The 4 stages are Fetch, Decode, Execute, Memory Read / Write Back. In this design, all 

the arithmetic, branch, logical and floating point operations (add, sub, mul and div) are performed and the 

resultant value is stored in the memory/register and retrieved back from memory when required.  

This is a general purpose 64-bit RISC processor with pipelining architecture which gets instructions 

on a regular basis using dedicated buses to its memory executes all its native instructions in stages with 

pipelining. It will have short (8-bit) and long (16-bit) instructions. For all Arithmetic and logical operations 

8-bit instructions are used and for all memory transactions and jump instructions 16-bit instructions are used 

and also have special instructions to access external ports. For all the jump instruction, the processor 

architecture will automatically flush the data in the pipeline, so as to avoid any misbehavior [6]. 

 

 

2. ARCHITECTURE OF THE DESIGN  

  The architecture of low power pipelined 64-bit RISC processor with Floating Point Unit is a single 

cycle pipelined processor as shown in Figure 1. This section presents the design of different modules like 

instruction fetch, instruction decode, register file, execution unit, floating point unit, memory read/write 

back, instruction set and low power unit along with four general purpose registers namely Register0, 

Register1, Register2, and Register3 [7].  

2.1. Instruction Fetch 

This stage consists of the program counter and branch prediction. It means the instruction present in 

the memory is fetched from the Program Counter (PC) and stored in the instruction register. The branch 

prediction part to be the most likely is then fetched and speculatively executed. This will increase flow in 

instruction pipeline and achieve high effective performance. 

 

2.2. Instruction Decoder  

This stage consists of the control unit, register file. The opcode fetched from the memory is being 

decoded for the next steps and moved to appropriate registers.This is a two-port register file which can 

perform two simultaneous read and one write operation. It contains four 64-bit general-purpose registers. 

When the Reg_Write signal is high, a write operation is performed to the register. 

 

2.3. Instruction Execution 

This stage consists of the arithmetic logic unit (ALU) and the ALU control unit. It performs the 

arithmetic & logical operations and also jump or branch instructions. The control unit is responsible for 

providing signals to the ALU that indicates the operation that the ALU will perform. 

       This unit also provides double precision floating point operations like addition, subtraction, 

multiplication, and division are performed. 

 

2.4. Memory Unit 

It means the result of the instruction execution (register-register or load instruction) is stored into the 

register file. The load and store instructions are used to access this module.  

 

2.5. Low Power Unit 

The input to low power unit is a global clock and gated clock is its output [8]. The input to low 

power unit is a global clock and its output is gated clock since the module will block the main clock in the 

following conditions. (i) When an instruction is a halt. (ii) When there is a continuous Nop operation. (iii) 

When program counter fails to increment.  
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Figure 1. Architecture of the proposed design 

 

 

3. HARDWARE AND SOFTWARE DETAILS 
CPLDs are integrated circuits (ICs) or chips that application designers configure to implement 

digital hardware such as mobile phones. CPLDs are another way to extend the density of the simple PLDs. 

The concept is to have a few functional blocks or PLD blocks or macro cells on a single device with general 

purpose interconnect in between. The building block of a CPLD is the macrocell, which contains logic 

implementing disjunctive normal form expressions and more specialized logic operations. CPLD’s 

predictable timing characteristics make them ideal for critical, high-performance control applications [9]. 

Typically, CPLDs have a shorter and more predictable delay than FPGAs and other programmable logic 

devices. Because they are inexpensive and require relatively small amounts of power, CPLDs are often used 

in cost-effective, battery-operated portable applications. The CPLD device used in the present work is MAX 

V (5M2210Z) manufactured by Altera. 

  Altera MAX V CPLDs deliver the industry's best value in low cost, low power CPLDs, offering 

robust new features at up to 50% lower total power when compared to competitive CPLDs. Altera's MAX V 

also features a unique, non-volatile architecture and one of the industry's largest density CPLDs. In addition, 

the MAX V integrates many functions that are previously external, such as flash, RAM, oscillators, and 

phase-locked loops. In many cases, it delivers more I/Os and logic per footprint at the same price as 

competitive CPLDs. The MAX V utilizes green packaging technology, with packages as small as 20mm. 

MAX V CPLDs are supported by Quartus II software v.10.1, which allows productivity enhancements 

resulting in faster simulation, faster board bring-up, and faster timing closure [10].    

 

 

4. RESULTS AND DISCUSSION  

The design is implemented on Altera MAX V CPLD on which arithmetic, branch operations and 

logical functions are verified. Pipelining would not flush when branch instruction occurs as it is implemented 

using dynamic branch prediction. Branch predictions will increase flow in instruction pipeline and achieve 

high effective performance. When the processor is idle, CLOCK is switched off through sleep mode by using 

low power technique. This design can be used for low power applications to enhance the battery life of the 

devices. This 64-bit RISC processor consumes only 1 instruction, whereas 32-bit RISC processor needs more 

than 1 instruction. This processor with floating point operations is used in many applications like signal 

processing, graphics and medical equipments. 

Figure 2 shows the simulation results of low power unit. Figure 3 shows the simulation results of 

64-bit RISC processor with FPU. Figure 4 shows the RTL schematic view of the processor which describes 

how the logic resources are organized inside the top level schematic view. 
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Figure 2. Simulation result of Low Power Unit 

 

 

 
 

Figure 3. Simulation result of 64-bit RISC processor with FPU 

 

 

 
 

Figure 4. RTL Schematic view of proposed processor 

 

 

Table 1 shows the results of the RISC processor which performs ALU operations for binary and     

hexadecimal values 

                   Input  var1  (Src) =64'b1010_0111_0110_1000_1111_0101_0011_1110 

                                                _1011_1001_1101_0001 _0010_0000_0110_0000 

 

                   Input  var2  (Dst) =64'b1111_0111_1010_0011_1100_1110_1101_0101 

                                                _1011_1000_0010_0011 _0000_0001_1101_0100 
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Table 1. Results for ALU 
Opcode Var 1 Var2 ALU operation Output in Binary 

00001 00 01 Addition 1001_1111_0000_1100_1100_0100_0001_0100_
0111_0001_1111_0100_0010_0010_0011_0100 

00010 00 01 Subtraction 0101_0000_0011_1010_1101_1001_1001_0110_

1111_1110_0101_0001_1110_0001_0111_0100 
00011 00 01 Logical AND 1010_0111_0010_0000_1100_0100_0001_0100_

1011_1000_0000_0001_0000_0000_0100_0000 

00100 00 01 Logical NOT 0101_1000_1001_0111_0000_1010_1100_0001_

0100_0110_0010_1110_1101_1111_1001_1111 

01001 00 01 Logical NAND 0101_1000_1101_1111_0011_1011_1110_1011_
0100_0111_1111_1110_1111_1111_1011_1111 

01010 00 01 Logical NOR 0000_1000_0001_0100_0000_0000_0000_0000_
0100_0110_0000_1100_1101_1110_0000_1011 

01101 00 01 Increment 1010_0111_0110_1000_1111_0101_0011_1110_

1011_1001_1101_0001_0010_0000_0110_0001 

01110 00 01 Division 0000_0000_0000_0000_0000_0000_0000_0000_
0000_0000_0000_0000_0000_0000_0000_0000 

10000 00 01 Multiplication 1100_1001_0010_1111_0011_1101_0110_1000_

0001_1111_0110_1111_0010_1111_1000_0000 

10011 00 01 Logical XOR 0101_0000_1100_1011_0011_1011_1110_1011_

0000_0001_1111_0010_0010_0001_1011_0100 

10100 00 01 Logical XNOR 1010_1111_0011_0100_1100_0100_0001_0100_

1111_1110_0000_1101_1101_1110_0100_1011 
10101 00 01 Logical OR 1111_0111_1110_1011_1111_1111_1111_1111_

1011_1001_1111_0011_0010_0001_1111_0100 

10110 00 01 Decrement 1010_0111_0110_1000_1111_0101_0011_1110_

1011_1001_1101_0001_0010_0000_0101_1111 

 

 

Table 2 shows the results of the RISC processor which performs double precision floating point 

arithmetic operations for binary. 

 

Input Var1 (Src) =64’b0011_1111_1000_0011_0011_0010_0000_0000                                                                                                                                                           

_0000_0000_0000_0000_0000_0000_0000_0000=153.5625d 

 

                        So, Sign1=0, Exp1=1023-7=1016, Man1=1.01*2
7 

 

Input Var2 (Dst)= 64’b0011_1111_1000_1010_0001_0010_0000_0000                                                

_0000_0000_0000_0000_0000_0000_0000_0000=208.5625d 
 

                       So, Sign2=0, Exp2=1023-7=1016, Man2=1.01*2
7 

                                           

 

Table 2. Results for FPU operations 
Opcode Var1 Var2 Operation Output in detail 

10111 00 01 Float Addition Sign=0 Exp=00000111111  

Man=10001101010001000000000000000000000
00000000000000000 

11000 00 01 Float Subtraction Sign=0Exp=00000111111 
Man=10000110111000000000000000000000000

00000000000000000 

11001 00 01 Float Multiplication Sign=0Exp=00011111110 

Man=00000000000000000000000000000000000

00000000000000000 

11010 00 01 Float Division Sign=0Exp=00000000000 

Man=00000000000000000000000000000000000 

0000000000000000 
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