
International Journal of Reconfigurable and Embedded Systems (IJRES)

Vol. 5, No. 2, July 2016, pp. 115~120

ISSN: 2089-4864  115

Journal homepage: http://iaesjournal.com/online/index.php/IJRES

Implementation of Low Power Pipelined 64-bit RISC Processor

with Unbiased FPU on CPLD

*J. Vijay Kumar, *B. Naga Raju, **M. Vasu Babu
,
***T. Ramanjappa

*Dept of Physics, SKUCET, Sri Krishnadevaraya University, Anantapur, India

**Dept of Applied Sciences, St. Ann’s College of Engineering Technology, Chirala, India

***Dept of Physics, Sri Krishnadevaraya University, Anantapur, India

Article Info ABSTRACT

Article history:

Received Jan 2, 2016

Revised Mar 23, 2016

Accepted Apr 11, 2016

 This article represents the implementation of low power pipelined 64-bit

RISC processor on Altera MAXV CPLD device. The design is verified for

arithmetic operations of both fixed and floating point numbers, branch and

logical function of RISC processor. For all the jump instruction, the

processor architecture will automatically flush the data in the pipeline, so as

to avoid any misbehavior. This processor contains FPU unit, which supports

double precision IEEE-754 format operations very accurately. The

simulation results have been verified by using ModelSim software. The ALU

operations and double precision floating point arithmetic operation results are

displayed on 7-Segments. The necessary code is written in Verilog HDL.

Keyword:

Altera Max V

Low power

Modelsim

RISC
Copyright © 2016 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

J. Vijay Kumar,

Departement of Physics,

Sri Krishnadevaraya University, College of Engineering and Technology.

Anantapur-515003.

Email: jvkphysics@gmail.com

1. INTRODUCTION

Today RISC CPUs (and microcontrollers) represent the vast majority of all CPUs in use. The RISC

design technique offers power in even small sizes and thus has come to completely dominate the market for

low-power “embedded” CPUs. Embedded CPUs are by far the largest market for processors. RISC had also

completely taken over the market for larger workstations [1]. Over many years, RISC instructions sets have

tended to grow in size. Thus, some have started using the term “load/store” to describe RISC processors,

since this is the key element of all such designs. Instead of the CPU itself handling many addressing modes,

load/store architecture uses a separate unit dedicated to handling very simple forms of load and store

operations [2].

The floating point operations have found intensive applications in the various fields for the

requirements for high precious operation due to its great dynamic range, high precision, and easy operation

rules. High attention has been paid on the design and research of the floating point processing units. With the

increasing requirements for the floating point operations for the high-speed data signal processing and the

scientific operation, the requirements for the high-speed hardware floating point arithmetic units have

become more and more exigent. The implementation of the floating point arithmetic has been very easy and

convenient in the floating point high-level languages, but the implementation of the arithmetic by hardware

has been very difficult [3]. With the development of the very large scale integration (VLSI) technology, a

kind of devices like CPLD and FPGAs have become the best options for implementing floating hardware

arithmetic units because of their high integration density, low price, high performance and flexible

applications requirements for high precious operation [4].

IJRES ISSN: 2088-8708 

Implementation of Low Power Pipelined 64-bit RISC Processor with Unbiased FPU on … (J Vijay Kumar)

116

Low power has emerged as a major principle theme in today’s electronics industry. The need for

low power has caused a major paradigm shift where power dissipation has become an important

consideration as performance and area. Low-power embedded processors are used in a wide variety of

applications including cars, phones, digital cameras, printers, and other such devices. There are lots of

techniques like Clock Gating, Supply Voltage Reduction, Multi-Vdd, Dynamic Voltage Frequency Scaling

etc to reduce the power.

In the present work, CPLD based 64-bit RISC processor with a high-speed floating point double

precision is designed using pipelined architecture. This can improve the speed of the operation as well as

overall performance [5]. The processor contains to implement 4-stage pipelining including double precision

floating point unit. The 4 stages are Fetch, Decode, Execute, Memory Read / Write Back. In this design, all

the arithmetic, branch, logical and floating point operations (add, sub, mul and div) are performed and the

resultant value is stored in the memory/register and retrieved back from memory when required.

This is a general purpose 64-bit RISC processor with pipelining architecture which gets instructions

on a regular basis using dedicated buses to its memory executes all its native instructions in stages with

pipelining. It will have short (8-bit) and long (16-bit) instructions. For all Arithmetic and logical operations

8-bit instructions are used and for all memory transactions and jump instructions 16-bit instructions are used

and also have special instructions to access external ports. For all the jump instruction, the processor

architecture will automatically flush the data in the pipeline, so as to avoid any misbehavior [6].

2. ARCHITECTURE OF THE DESIGN

 The architecture of low power pipelined 64-bit RISC processor with Floating Point Unit is a single

cycle pipelined processor as shown in Figure 1. This section presents the design of different modules like

instruction fetch, instruction decode, register file, execution unit, floating point unit, memory read/write

back, instruction set and low power unit along with four general purpose registers namely Register0,

Register1, Register2, and Register3 [7].

2.1. Instruction Fetch

This stage consists of the program counter and branch prediction. It means the instruction present in

the memory is fetched from the Program Counter (PC) and stored in the instruction register. The branch

prediction part to be the most likely is then fetched and speculatively executed. This will increase flow in

instruction pipeline and achieve high effective performance.

2.2. Instruction Decoder

This stage consists of the control unit, register file. The opcode fetched from the memory is being

decoded for the next steps and moved to appropriate registers.This is a two-port register file which can

perform two simultaneous read and one write operation. It contains four 64-bit general-purpose registers.

When the Reg_Write signal is high, a write operation is performed to the register.

2.3. Instruction Execution

This stage consists of the arithmetic logic unit (ALU) and the ALU control unit. It performs the

arithmetic & logical operations and also jump or branch instructions. The control unit is responsible for

providing signals to the ALU that indicates the operation that the ALU will perform.

 This unit also provides double precision floating point operations like addition, subtraction,

multiplication, and division are performed.

2.4. Memory Unit

It means the result of the instruction execution (register-register or load instruction) is stored into the

register file. The load and store instructions are used to access this module.

2.5. Low Power Unit

The input to low power unit is a global clock and gated clock is its output [8]. The input to low

power unit is a global clock and its output is gated clock since the module will block the main clock in the

following conditions. (i) When an instruction is a halt. (ii) When there is a continuous Nop operation. (iii)

When program counter fails to increment.

  ISSN: 2089-4864

IJRES Vol. 5, No. 2, July 2016 : 118 – 123

117

Figure 1. Architecture of the proposed design

3. HARDWARE AND SOFTWARE DETAILS
CPLDs are integrated circuits (ICs) or chips that application designers configure to implement

digital hardware such as mobile phones. CPLDs are another way to extend the density of the simple PLDs.

The concept is to have a few functional blocks or PLD blocks or macro cells on a single device with general

purpose interconnect in between. The building block of a CPLD is the macrocell, which contains logic

implementing disjunctive normal form expressions and more specialized logic operations. CPLD’s

predictable timing characteristics make them ideal for critical, high-performance control applications [9].

Typically, CPLDs have a shorter and more predictable delay than FPGAs and other programmable logic

devices. Because they are inexpensive and require relatively small amounts of power, CPLDs are often used

in cost-effective, battery-operated portable applications. The CPLD device used in the present work is MAX

V (5M2210Z) manufactured by Altera.

 Altera MAX V CPLDs deliver the industry's best value in low cost, low power CPLDs, offering

robust new features at up to 50% lower total power when compared to competitive CPLDs. Altera's MAX V

also features a unique, non-volatile architecture and one of the industry's largest density CPLDs. In addition,

the MAX V integrates many functions that are previously external, such as flash, RAM, oscillators, and

phase-locked loops. In many cases, it delivers more I/Os and logic per footprint at the same price as

competitive CPLDs. The MAX V utilizes green packaging technology, with packages as small as 20mm.

MAX V CPLDs are supported by Quartus II software v.10.1, which allows productivity enhancements

resulting in faster simulation, faster board bring-up, and faster timing closure [10].

4. RESULTS AND DISCUSSION

The design is implemented on Altera MAX V CPLD on which arithmetic, branch operations and

logical functions are verified. Pipelining would not flush when branch instruction occurs as it is implemented

using dynamic branch prediction. Branch predictions will increase flow in instruction pipeline and achieve

high effective performance. When the processor is idle, CLOCK is switched off through sleep mode by using

low power technique. This design can be used for low power applications to enhance the battery life of the

devices. This 64-bit RISC processor consumes only 1 instruction, whereas 32-bit RISC processor needs more

than 1 instruction. This processor with floating point operations is used in many applications like signal

processing, graphics and medical equipments.

Figure 2 shows the simulation results of low power unit. Figure 3 shows the simulation results of

64-bit RISC processor with FPU. Figure 4 shows the RTL schematic view of the processor which describes

how the logic resources are organized inside the top level schematic view.

IF Module

Instruction

Branch

Prediction PC

ID Module

ID

&

Operand

Fetch Module

IE Module

(ALU

& FPU)

Memory data

64-bit REGISTERS

(R0, R1, R2&R3)

PROGRAM MEMORY

Load/Store

Module

DATA MEMORY RESULT

Low Power Unit

http://www.answers.com/topic/macrocell-array
http://www.answers.com/topic/disjunctive-normal-form

IJRES ISSN: 2088-8708 

Implementation of Low Power Pipelined 64-bit RISC Processor with Unbiased FPU on … (J Vijay Kumar)

118

Figure 2. Simulation result of Low Power Unit

Figure 3. Simulation result of 64-bit RISC processor with FPU

Figure 4. RTL Schematic view of proposed processor

Table 1 shows the results of the RISC processor which performs ALU operations for binary and

hexadecimal values

 Input var1 (Src) =64'b1010_0111_0110_1000_1111_0101_0011_1110

 _1011_1001_1101_0001 _0010_0000_0110_0000

 Input var2 (Dst) =64'b1111_0111_1010_0011_1100_1110_1101_0101

 _1011_1000_0010_0011 _0000_0001_1101_0100

  ISSN: 2089-4864

IJRES Vol. 5, No. 2, July 2016 : 118 – 123

119

Table 1. Results for ALU
Opcode Var 1 Var2 ALU operation Output in Binary

00001 00 01 Addition 1001_1111_0000_1100_1100_0100_0001_0100_
0111_0001_1111_0100_0010_0010_0011_0100

00010 00 01 Subtraction 0101_0000_0011_1010_1101_1001_1001_0110_

1111_1110_0101_0001_1110_0001_0111_0100
00011 00 01 Logical AND 1010_0111_0010_0000_1100_0100_0001_0100_

1011_1000_0000_0001_0000_0000_0100_0000

00100 00 01 Logical NOT 0101_1000_1001_0111_0000_1010_1100_0001_

0100_0110_0010_1110_1101_1111_1001_1111

01001 00 01 Logical NAND 0101_1000_1101_1111_0011_1011_1110_1011_
0100_0111_1111_1110_1111_1111_1011_1111

01010 00 01 Logical NOR 0000_1000_0001_0100_0000_0000_0000_0000_
0100_0110_0000_1100_1101_1110_0000_1011

01101 00 01 Increment 1010_0111_0110_1000_1111_0101_0011_1110_

1011_1001_1101_0001_0010_0000_0110_0001

01110 00 01 Division 0000_0000_0000_0000_0000_0000_0000_0000_
0000_0000_0000_0000_0000_0000_0000_0000

10000 00 01 Multiplication 1100_1001_0010_1111_0011_1101_0110_1000_

0001_1111_0110_1111_0010_1111_1000_0000

10011 00 01 Logical XOR 0101_0000_1100_1011_0011_1011_1110_1011_

0000_0001_1111_0010_0010_0001_1011_0100

10100 00 01 Logical XNOR 1010_1111_0011_0100_1100_0100_0001_0100_

1111_1110_0000_1101_1101_1110_0100_1011
10101 00 01 Logical OR 1111_0111_1110_1011_1111_1111_1111_1111_

1011_1001_1111_0011_0010_0001_1111_0100

10110 00 01 Decrement 1010_0111_0110_1000_1111_0101_0011_1110_

1011_1001_1101_0001_0010_0000_0101_1111

Table 2 shows the results of the RISC processor which performs double precision floating point

arithmetic operations for binary.

Input Var1 (Src) =64’b0011_1111_1000_0011_0011_0010_0000_0000

_0000_0000_0000_0000_0000_0000_0000_0000=153.5625d

 So, Sign1=0, Exp1=1023-7=1016, Man1=1.01*2
7

Input Var2 (Dst)= 64’b0011_1111_1000_1010_0001_0010_0000_0000

_0000_0000_0000_0000_0000_0000_0000_0000=208.5625d

 So, Sign2=0, Exp2=1023-7=1016, Man2=1.01*2
7

Table 2. Results for FPU operations
Opcode Var1 Var2 Operation Output in detail

10111 00 01 Float Addition Sign=0 Exp=00000111111

Man=10001101010001000000000000000000000
00000000000000000

11000 00 01 Float Subtraction Sign=0Exp=00000111111
Man=10000110111000000000000000000000000

00000000000000000

11001 00 01 Float Multiplication Sign=0Exp=00011111110

Man=00000000000000000000000000000000000

00000000000000000

11010 00 01 Float Division Sign=0Exp=00000000000

Man=00000000000000000000000000000000000

0000000000000000

IJRES ISSN: 2088-8708 

Implementation of Low Power Pipelined 64-bit RISC Processor with Unbiased FPU on … (J Vijay Kumar)

120

REFERENCES
[1] D. Patterson and D. Ditzel, “The case for the reduced instruction set computer”, ACM SIGARCH Computer

Architecture News, 1980.

[2] Marie Elma Domingo, “A Presentation of the RISC and CISC Instruction Set Architectures”, University of the

Philippines Diliman.

[3] http://www2.Hsiao-Fen Fu _Tutorial_IEEE754floatingpoint.pdf.

[4] Kavitha Sravanthi And Addula Saikumar, “An FPGA Based Double Precision Floating Point Arithmetic Unit

Using Verilog”, International Journal Of Engineering Research & Technology, Pp.576-581, 2013.

[5] Aboobacker Sidheeq, “Four Stages Pipelined 16 bit RISC on Xilinx Spartan 3AN FPGA”, International Journal of

Computer Applications, pp.29-38, 2012.

[6] Preetam Bhosle and Hari Krishna Moorthy, “FPGA Implementation of Low Power Pipelined 32-Bit RISC

Processor”, International Journal of Innovative Technology and Exploring Engineering, pp.66-71, 2012.

[7] J. Vijay Kumar, B. Naga Raju, C. Swapna and T. Ramanjappa, “Design and Implementation of Low power

pipelined 64-bit RISC processor using FPGA”, International Journal of Advanced Research Engineering and

Technology, pp.61-69, 2014.

[8] J. Ravindra and T. Anuradha, “Design of Low power RISC Processor by Applying Clock Gating Technique”,

International Journal of Engineering Research and Applications, pp. 94-99, 2012.

[9] https://www.altera.com/en_US/pdfs/literature/hb/max-v/mv51001.pdf

[10] J. Vijay Kumar, B. Naga Raju, M. Vasu Babu and T. Ramanjappa “CPLD based design and implementation of low

power pipelined 64-Bit RISC processor”, International Journal of Emerging Technology and Advanced

Engineering, pp.274-277, 2015.

